Eventual Nonsensitivity and Tame Dynamical Systems

نویسنده

  • ELI GLASNER
چکیده

In this paper we characterize tame dynamical systems and functions in terms of eventual non-sensitivity and eventual fragmentability. As a notable application we obtain a neat characterization of tame subshifts X ⊂ {0, 1}Z: for every infinite subset L ⊆ Z there exists an infinite subset K ⊆ L such that πK(X) is a countable subset of {0, 1}K . The notion of eventual fragmentability is one of the properties we encounter which indicate some “smallness” of a family. We investigate a “smallness hierarchy” for families of continuous functions on compact dynamical systems, and link the existence of a “small” family which separates points of a dynamical system (G,X) to the representability of X on “good” Banach spaces. For example, for metric dynamical systems the property of admitting a separating family which is eventually fragmented is equivalent to being tame. We give some sufficient conditions for coding functions to be tame and, among other applications, show that certain multidimensional analogues of Sturmian sequences are tame. We also show that linearly ordered dynamical systems are tame and discuss examples where some universal dynamical systems associated with certain Polish groups are tame.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

More on Tame Dynamical Systems

In this work, on the one hand, we survey and amplify old results concerning tame dynamical systems and, on the other, prove some new results and exhibit new examples of such systems. In particular, we study tame symbolic systems and establish a neat characterization of tame subshifts. We also provide sufficient conditions which ensure that certain coding functions are tame. Finally we discuss e...

متن کامل

The Structure of Tame Minimal Dynamical Systems

A dynamical version of the Bourgain-Fremlin-Talagrand dichotomy shows that the enveloping semigroup of a dynamical system is either very large and contains a topological copy of βN, or it is a “tame” topological space whose topology is determined by the convergence of sequences. In the latter case the dynamical system is called tame. We use the structure theory of minimal dynamical systems to s...

متن کامل

On Tame Dynamical Systems

A dynamical version of the Bourgain-Fremlin-Talagrand dichotomy shows that the enveloping semigroup of a dynamical system is either very large and contains a topological copy of βN, or it is a “tame” topological space whose topology is determined by the convergence of sequences. In the latter case we say that the dynamical system is tame. We show that (i) a metric distal minimal system is tame ...

متن کامل

On Tame Enveloping Semigroups

A dynamical version of the Bourgain-Fremlin-Talagrand dichotomy shows that the enveloping semigroup of a dynamical system is either very large and contains a topological copy of βN, or it is a “tame” topological space whose topology is determined by the convergence of sequences. In the latter case we say that the dynamical system is tame. We show that (i) a metric distal minimal system is tame ...

متن کامل

Trajectory length of the tame sweeping process

We show that bounded trajectories of the semi-algebraic, or more generally o-minimally definable, sweeping process have finite length. This result generalizes previous work on gradient/subgradient dynamical systems and paves the way for further extensions in control systems and mathematical mechanics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014